
The result of a cluster analysis
shown as the coloring of the squares
into three clusters.

Cluster analysis
Cluster analysis or clustering is the task of grouping a
set of objects in such a way that objects in the same group
(called a cluster) are more similar (in some sense) to each
other than to those in other groups (clusters). It is a main
task of exploratory data analysis, and a common technique
for statistical data analysis, used in many fields, including
pattern recognition, image analysis, information retrieval,
bioinformatics, data compression, computer graphics and
machine learning.

Cluster analysis itself is not one specific algorithm, but the
general task to be solved. It can be achieved by various
algorithms that differ significantly in their understanding of
what constitutes a cluster and how to efficiently find them. Popular notions of clusters include
groups with small distances between cluster members, dense areas of the data space, intervals
or particular statistical distributions. Clustering can therefore be formulated as a multi-objective
optimization problem. The appropriate clustering algorithm and parameter settings (including
parameters such as the distance function to use, a density threshold or the number of expected
clusters) depend on the individual data set and intended use of the results. Cluster analysis as
such is not an automatic task, but an iterative process of knowledge discovery or interactive
multi-objective optimization that involves trial and failure. It is often necessary to modify data
preprocessing and model parameters until the result achieves the desired properties.

Besides the term clustering, there are a number of terms with similar meanings, including
automatic classification, numerical taxonomy, botryology (from Greek βότρυς "grape"),
typological analysis, and community detection. The subtle differences are often in the use of
the results: while in data mining, the resulting groups are the matter of interest, in automatic
classification the resulting discriminative power is of interest.

Cluster analysis was originated in anthropology by Driver and Kroeber in 1932[1] and
introduced to psychology by Joseph Zubin in 1938[2] and Robert Tryon in 1939[3] and famously
used by Cattell beginning in 1943[4] for trait theory classification in personality psychology.
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The notion of a "cluster" cannot be precisely defined, which is one of the reasons why there are
so many clustering algorithms.[5] There is a common denominator: a group of data objects.
However, different researchers employ different cluster models, and for each of these cluster
models again different algorithms can be given. The notion of a cluster, as found by different
algorithms, varies significantly in its properties. Understanding these "cluster models" is key to
understanding the differences between the various algorithms. Typical cluster models include:

Connectivity models: for example, hierarchical clustering builds models based on distance
connectivity.
Centroid models: for example, the k-means algorithm represents each cluster by a single
mean vector.
Distribution models: clusters are modeled using statistical distributions, such as multivariate
normal distributions used by the expectation-maximization algorithm.
Density models: for example, DBSCAN and OPTICS defines clusters as connected dense
regions in the data space.
Subspace models: in biclustering (also known as co-clustering or two-mode-clustering),
clusters are modeled with both cluster members and relevant attributes.
Group models: some algorithms do not provide a refined model for their results and just
provide the grouping information.
Graph-based models: a clique, that is, a subset of nodes in a graph such that every two
nodes in the subset are connected by an edge can be considered as a prototypical form of
cluster. Relaxations of the complete connectivity requirement (a fraction of the edges can be
missing) are known as quasi-cliques, as in the HCS clustering algorithm.
Signed graph models: Every path in a signed graph has a sign from the product of the signs
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on the edges. Under the assumptions of balance theory, edges may change sign and result
in a bifurcated graph. The weaker "clusterability axiom" (no cycle has exactly one negative
edge) yields results with more than two clusters, or subgraphs with only positive edges.[6]

Neural models: the most well known unsupervised neural network is the self-organizing map
and these models can usually be characterized as similar to one or more of the above
models, and including subspace models when neural networks implement a form of
Principal Component Analysis or Independent Component Analysis.

A "clustering" is essentially a set of such clusters, usually containing all objects in the data set.
Additionally, it may specify the relationship of the clusters to each other, for example, a
hierarchy of clusters embedded in each other. Clusterings can be roughly distinguished as:

Hard clustering: each object belongs to a cluster or not
Soft clustering (also: fuzzy clustering): each object belongs to each cluster to a certain
degree (for example, a likelihood of belonging to the cluster)

There are also finer distinctions possible, for example:

Strict partitioning clustering: each object belongs to exactly one cluster
Strict partitioning clustering with outliers: objects can also belong to no cluster, and are
considered outliers
Overlapping clustering (also: alternative clustering, multi-view clustering): objects may
belong to more than one cluster; usually involving hard clusters
Hierarchical clustering: objects that belong to a child cluster also belong to the parent cluster
Subspace clustering: while an overlapping clustering, within a uniquely defined subspace,
clusters are not expected to overlap

As listed above, clustering algorithms can be categorized based on their cluster model. The
following overview will only list the most prominent examples of clustering algorithms, as there
are possibly over 100 published clustering algorithms. Not all provide models for their clusters
and can thus not easily be categorized. An overview of algorithms explained in Wikipedia can be
found in the list of statistics algorithms.

There is no objectively "correct" clustering algorithm, but as it was noted, "clustering is in the
eye of the beholder."[5] The most appropriate clustering algorithm for a particular problem
often needs to be chosen experimentally, unless there is a mathematical reason to prefer one
cluster model over another. An algorithm that is designed for one kind of model will generally
fail on a data set that contains a radically different kind of model.[5] For example, k-means
cannot find non-convex clusters.[5]

Connectivity-based clustering, also known as hierarchical clustering, is based on the core idea
of objects being more related to nearby objects than to objects farther away. These algorithms
connect "objects" to form "clusters" based on their distance. A cluster can be described largely
by the maximum distance needed to connect parts of the cluster. At different distances, different
clusters will form, which can be represented using a dendrogram, which explains where the
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common name "hierarchical clustering" comes from: these algorithms do not provide a single
partitioning of the data set, but instead provide an extensive hierarchy of clusters that merge
with each other at certain distances. In a dendrogram, the y-axis marks the distance at which
the clusters merge, while the objects are placed along the x-axis such that the clusters don't mix.

Connectivity-based clustering is a whole family of methods that differ by the way distances are
computed. Apart from the usual choice of distance functions, the user also needs to decide on
the linkage criterion (since a cluster consists of multiple objects, there are multiple candidates
to compute the distance) to use. Popular choices are known as single-linkage clustering (the
minimum of object distances), complete linkage clustering (the maximum of object distances),
and UPGMA or WPGMA ("Unweighted or Weighted Pair Group Method with Arithmetic Mean",
also known as average linkage clustering). Furthermore, hierarchical clustering can be
agglomerative (starting with single elements and aggregating them into clusters) or divisive
(starting with the complete data set and dividing it into partitions).

These methods will not produce a unique partitioning of the data set, but a hierarchy from
which the user still needs to choose appropriate clusters. They are not very robust towards
outliers, which will either show up as additional clusters or even cause other clusters to merge
(known as "chaining phenomenon", in particular with single-linkage clustering). In the general
case, the complexity is  for agglomerative clustering and  for divisive
clustering,[7] which makes them too slow for large data sets. For some special cases, optimal
efficient methods (of complexity ) are known: SLINK[8] for single-linkage and CLINK[9]

for complete-linkage clustering. In the data mining community these methods are recognized as
a theoretical foundation of cluster analysis, but often considered obsolete. They did however
provide inspiration for many later methods such as density based clustering.

Linkage clustering examples

Single-linkage on Gaussian
data. At 35 clusters, the biggest
cluster starts fragmenting into
smaller parts, while before it
was still connected to the
second largest due to the
single-link effect.

 

Single-linkage on density-based
clusters. 20 clusters extracted,
most of which contain single
elements, since linkage
clustering does not have a
notion of "noise".
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In centroid-based clustering, each cluster is represented by a central vector, which is not
necessarily a member of the data set. When the number of clusters is fixed to k, k-means
clustering gives a formal definition as an optimization problem: find the k cluster centers and
assign the objects to the nearest cluster center, such that the squared distances from the cluster
are minimized.

The optimization problem itself is known to be NP-hard, and thus the common approach is to
search only for approximate solutions. A particularly well known approximate method is Lloyd's
algorithm,[10] often just referred to as "k-means algorithm" (although another algorithm
introduced this name). It does however only find a local optimum, and is commonly run
multiple times with different random initializations. Variations of k-means often include such
optimizations as choosing the best of multiple runs, but also restricting the centroids to
members of the data set (k-medoids), choosing medians (k-medians clustering), choosing the
initial centers less randomly (k-means++) or allowing a fuzzy cluster assignment (fuzzy c-
means).

Most k-means-type algorithms require the number of clusters – k – to be specified in advance,
which is considered to be one of the biggest drawbacks of these algorithms. Furthermore, the
algorithms prefer clusters of approximately similar size, as they will always assign an object to
the nearest centroid. This often leads to incorrectly cut borders of clusters (which is not
surprising since the algorithm optimizes cluster centers, not cluster borders).

K-means has a number of interesting theoretical properties. First, it partitions the data space
into a structure known as a Voronoi diagram. Second, it is conceptually close to nearest
neighbor classification, and as such is popular in machine learning. Third, it can be seen as a
variation of model based clustering, and Lloyd's algorithm as a variation of the Expectation-
maximization algorithm for this model discussed below.

k-means clustering examples

k-means separates data into
Voronoi cells, which assumes
equal-sized clusters (not
adequate here)

 

k-means cannot represent
density-based clusters

Centroid-based clustering
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Centroid-based clustering problems such as k-means and k-medoids are special cases of the
uncapacitated, metric facility location problem, a canonical problem in the operations research
and computational geometry communities. In a basic facility location problem (of which there
are numerous variants that model more elaborate settings), the task is to find the best
warehouse locations to optimally service a given set of consumers. One may view "warehouses"
as cluster centroids and "consumer locations" as the data to be clustered. This makes it possible
to apply the well-developed algorithmic solutions from the facility location literature to the
presently considered centroid-based clustering problem.

The clustering model most closely related to statistics is based on distribution models. Clusters
can then easily be defined as objects belonging most likely to the same distribution. A
convenient property of this approach is that this closely resembles the way artificial data sets are
generated: by sampling random objects from a distribution.

While the theoretical foundation of these methods is excellent, they suffer from one key problem
known as overfitting, unless constraints are put on the model complexity. A more complex
model will usually be able to explain the data better, which makes choosing the appropriate
model complexity inherently difficult.

One prominent method is known as Gaussian mixture models (using the expectation-
maximization algorithm). Here, the data set is usually modeled with a fixed (to avoid
overfitting) number of Gaussian distributions that are initialized randomly and whose
parameters are iteratively optimized to better fit the data set. This will converge to a local
optimum, so multiple runs may produce different results. In order to obtain a hard clustering,
objects are often then assigned to the Gaussian distribution they most likely belong to; for soft
clusterings, this is not necessary.

Distribution-based clustering produces complex models for clusters that can capture correlation
and dependence between attributes. However, these algorithms put an extra burden on the
user: for many real data sets, there may be no concisely defined mathematical model (e.g.
assuming Gaussian distributions is a rather strong assumption on the data).

Gaussian mixture model clustering examples

Distribution-based clustering
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On Gaussian-distributed data,
EM works well, since it uses
Gaussians for modelling
clusters

 

Density-based clusters cannot
be modeled using Gaussian
distributions

In density-based clustering,[11] clusters are defined as areas of higher density than the
remainder of the data set. Objects in sparse areas – that are required to separate clusters – are
usually considered to be noise and border points.

The most popular[12] density based clustering method is DBSCAN.[13] In contrast to many
newer methods, it features a well-defined cluster model called "density-reachability". Similar to
linkage based clustering, it is based on connecting points within certain distance thresholds.
However, it only connects points that satisfy a density criterion, in the original variant defined
as a minimum number of other objects within this radius. A cluster consists of all density-
connected objects (which can form a cluster of an arbitrary shape, in contrast to many other
methods) plus all objects that are within these objects' range. Another interesting property of
DBSCAN is that its complexity is fairly low – it requires a linear number of range queries on the
database – and that it will discover essentially the same results (it is deterministic for core and
noise points, but not for border points) in each run, therefore there is no need to run it multiple
times. OPTICS[14] is a generalization of DBSCAN that removes the need to choose an
appropriate value for the range parameter , and produces a hierarchical result related to that of
linkage clustering. DeLi-Clu,[15] Density-Link-Clustering combines ideas from single-linkage
clustering and OPTICS, eliminating the  parameter entirely and offering performance
improvements over OPTICS by using an R-tree index.

The key drawback of DBSCAN and OPTICS is that they expect some kind of density drop to
detect cluster borders. On data sets with, for example, overlapping Gaussian distributions – a
common use case in artificial data – the cluster borders produced by these algorithms will often
look arbitrary, because the cluster density decreases continuously. On a data set consisting of
mixtures of Gaussians, these algorithms are nearly always outperformed by methods such as
EM clustering that are able to precisely model this kind of data.

Density-based clustering
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Mean-shift is a clustering approach where each object is moved to the densest area in its
vicinity, based on kernel density estimation. Eventually, objects converge to local maxima of
density. Similar to k-means clustering, these "density attractors" can serve as representatives for
the data set, but mean-shift can detect arbitrary-shaped clusters similar to DBSCAN. Due to the
expensive iterative procedure and density estimation, mean-shift is usually slower than
DBSCAN or k-Means. Besides that, the applicability of the mean-shift algorithm to
multidimensional data is hindered by the unsmooth behaviour of the kernel density estimate,
which results in over-fragmentation of cluster tails.[15]

Density-based clustering examples

Density-based clustering with
DBSCAN.

 

DBSCAN assumes clusters of
similar density, and may have
problems separating nearby
clusters

OPTICS is a DBSCAN variant,
improving handling of different
densities clusters

Grid-based clustering
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The grid-based technique is used for a multi-dimensional data set.[16] In this technique, we
create a grid structure, and the comparison is performed on grids (also known as cells). The
grid-based technique is fast and has low computational complexity. There are two types of grid-
based clustering methods: STING and CLIQUE. Steps involved in grid-based clustering
algorithm are:

1. Divide data space into a finite number of cells.
2. Randomly select a cell ‘c’, where c should not be traversed beforehand.
3. Calculate the density of ‘c’
4. If the density of ‘c’ greater than threshold density

1. Mark cell ‘c’ as a new cluster
2. Calculate the density of all the neighbors of ‘c’
3. If the density of a neighboring cell is greater than threshold density then, add the cell in

the cluster and repeat steps 4.2 and 4.3 till there is no neighbor with a density greater
than threshold density.

5. Repeat steps 2,3 and 4 till all the cells are traversed.
6. Stop.

In recent years, considerable effort has been put into improving the performance of existing
algorithms.[17][18] Among them are CLARANS,[19] and BIRCH.[20] With the recent need to
process larger and larger data sets (also known as big data), the willingness to trade semantic
meaning of the generated clusters for performance has been increasing. This led to the
development of pre-clustering methods such as canopy clustering, which can process huge data
sets efficiently, but the resulting "clusters" are merely a rough pre-partitioning of the data set to
then analyze the partitions with existing slower methods such as k-means clustering.

For high-dimensional data, many of the existing methods fail due to the curse of dimensionality,
which renders particular distance functions problematic in high-dimensional spaces. This led to
new clustering algorithms for high-dimensional data that focus on subspace clustering (where
only some attributes are used, and cluster models include the relevant attributes for the cluster)
and correlation clustering that also looks for arbitrary rotated ("correlated") subspace clusters
that can be modeled by giving a correlation of their attributes.[21] Examples for such clustering
algorithms are CLIQUE[22] and SUBCLU.[23]

Ideas from density-based clustering methods (in particular the DBSCAN/OPTICS family of
algorithms) have been adapted to subspace clustering (HiSC,[24] hierarchical subspace
clustering and DiSH[25]) and correlation clustering (HiCO,[26] hierarchical correlation
clustering, 4C[27] using "correlation connectivity" and ERiC[28] exploring hierarchical density-
based correlation clusters).

Several different clustering systems based on mutual information have been proposed. One is
Marina Meilă's variation of information metric;[29] another provides hierarchical
clustering.[30] Using genetic algorithms, a wide range of different fit-functions can be
optimized, including mutual information.[31] Also belief propagation, a recent development in
computer science and statistical physics, has led to the creation of new types of clustering
algorithms.[32]

Recent developments
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Evaluation (or "validation") of clustering results is as difficult as the clustering itself.[33] Popular
approaches involve "internal" evaluation, where the clustering is summarized to a single quality
score, "external" evaluation, where the clustering is compared to an existing "ground truth"
classification, "manual" evaluation by a human expert, and "indirect" evaluation by evaluating
the utility of the clustering in its intended application.[34]

Internal evaluation measures suffer from the problem that they represent functions that
themselves can be seen as a clustering objective. For example, one could cluster the data set by
the Silhouette coefficient; except that there is no known efficient algorithm for this. By using
such an internal measure for evaluation, one rather compares the similarity of the optimization
problems,[34] and not necessarily how useful the clustering is.

External evaluation has similar problems: if we have such "ground truth" labels, then we would
not need to cluster; and in practical applications we usually do not have such labels. On the
other hand, the labels only reflect one possible partitioning of the data set, which does not imply
that there does not exist a different, and maybe even better, clustering.

Neither of these approaches can therefore ultimately judge the actual quality of a clustering, but
this needs human evaluation,[34] which is highly subjective. Nevertheless, such statistics can be
quite informative in identifying bad clusterings,[35] but one should not dismiss subjective
human evaluation.[35]

When a clustering result is evaluated based on the data that was clustered itself, this is called
internal evaluation. These methods usually assign the best score to the algorithm that produces
clusters with high similarity within a cluster and low similarity between clusters. One drawback
of using internal criteria in cluster evaluation is that high scores on an internal measure do not
necessarily result in effective information retrieval applications.[36] Additionally, this evaluation
is biased towards algorithms that use the same cluster model. For example, k-means clustering
naturally optimizes object distances, and a distance-based internal criterion will likely overrate
the resulting clustering.

Therefore, the internal evaluation measures are best suited to get some insight into situations
where one algorithm performs better than another, but this shall not imply that one algorithm
produces more valid results than another.[5] Validity as measured by such an index depends on
the claim that this kind of structure exists in the data set. An algorithm designed for some kind
of models has no chance if the data set contains a radically different set of models, or if the
evaluation measures a radically different criterion.[5] For example, k-means clustering can only
find convex clusters, and many evaluation indexes assume convex clusters. On a data set with
non-convex clusters neither the use of k-means, nor of an evaluation criterion that assumes
convexity, is sound.

More than a dozen of internal evaluation measures exist, usually based on the intuition that
items in the same cluster should be more similar than items in different clusters.[37]: 115–121  For
example, the following methods can be used to assess the quality of clustering algorithms based
on internal criterion:

Evaluation and assessment

Internal evaluation



Davies–Bouldin index

The Davies–Bouldin index can be calculated by the following formula:

where n is the number of clusters,  is the centroid of cluster ,  is the average distance
of all elements in cluster  to centroid , and  is the distance between centroids 

 and . Since algorithms that produce clusters with low intra-cluster distances (high
intra-cluster similarity) and high inter-cluster distances (low inter-cluster similarity) will
have a low Davies–Bouldin index, the clustering algorithm that produces a collection of
clusters with the smallest Davies–Bouldin index is considered the best algorithm based on
this criterion.

Dunn index

The Dunn index aims to identify dense and well-separated clusters. It is defined as the
ratio between the minimal inter-cluster distance to maximal intra-cluster distance. For
each cluster partition, the Dunn index can be calculated by the following formula:[38]

where d(i,j) represents the distance between clusters i and j, and d '(k) measures the intra-
cluster distance of cluster k. The inter-cluster distance d(i,j) between two clusters may be
any number of distance measures, such as the distance between the centroids of the
clusters. Similarly, the intra-cluster distance d '(k) may be measured in a variety ways,
such as the maximal distance between any pair of elements in cluster k. Since internal
criterion seek clusters with high intra-cluster similarity and low inter-cluster similarity,
algorithms that produce clusters with high Dunn index are more desirable.

Silhouette coefficient

The silhouette coefficient contrasts the average distance to elements in the same cluster
with the average distance to elements in other clusters. Objects with a high silhouette
value are considered well clustered, objects with a low value may be outliers. This index
works well with k-means clustering, and is also used to determine the optimal number of
clusters.

In external evaluation, clustering results are evaluated based on data that was not used for
clustering, such as known class labels and external benchmarks. Such benchmarks consist of a
set of pre-classified items, and these sets are often created by (expert) humans. Thus, the
benchmark sets can be thought of as a gold standard for evaluation.[33] These types of
evaluation methods measure how close the clustering is to the predetermined benchmark
classes. However, it has recently been discussed whether this is adequate for real data, or only
on synthetic data sets with a factual ground truth, since classes can contain internal structure,
the attributes present may not allow separation of clusters or the classes may contain

External evaluation
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anomalies.[39] Additionally, from a knowledge discovery point of view, the reproduction of
known knowledge may not necessarily be the intended result.[39] In the special scenario of
constrained clustering, where meta information (such as class labels) is used already in the
clustering process, the hold-out of information for evaluation purposes is non-trivial.[40]

A number of measures are adapted from variants used to evaluate classification tasks. In place
of counting the number of times a class was correctly assigned to a single data point (known as
true positives), such pair counting metrics assess whether each pair of data points that is truly
in the same cluster is predicted to be in the same cluster.[33]

As with internal evaluation, several external evaluation measures exist,[37]: 125–129  for example:

Purity: Purity is a measure of the extent to which clusters contain a single class.[36] Its
calculation can be thought of as follows: For each cluster, count the number of data points
from the most common class in said cluster. Now take the sum over all clusters and divide
by the total number of data points. Formally, given some set of clusters  and some set of
classes , both partitioning  data points, purity can be defined as:

This measure doesn't penalize having many clusters, and more clusters will make it easier
to produce a high purity. A purity score of 1 is always possible by putting each data point
in its own cluster. Also, purity doesn't work well for imbalanced data, where even poorly
performing clustering algorithms will give a high purity value. For example, if a size 1000
dataset consists of two classes, one containing 999 points and the other containing 1
point, then every possible partition will have a purity of at least 99.9%.

Rand index[41]

The Rand index computes how similar the clusters (returned by the clustering algorithm)
are to the benchmark classifications. It can be computed using the following formula:

where  is the number of true positives,  is the number of true negatives,  is the
number of false positives, and  is the number of false negatives. The instances being
counted here are the number of correct pairwise assignments. That is,  is the number
of pairs of points that are clustered together in the predicted partition and in the ground
truth partition,  is the number of pairs of points that are clustered together in the
predicted partition but not in the ground truth partition etc. If the dataset is of size N, then 

.

One issue with the Rand index is that false positives and false negatives are equally weighted.
This may be an undesirable characteristic for some clustering applications. The F-measure
addresses this concern, as does the chance-corrected adjusted Rand index.

F-measure
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The F-measure can be used to balance the contribution of false negatives by weighting
recall through a parameter . Let precision and recall (both external evaluation
measures in themselves) be defined as follows:

where  is the precision rate and  is the recall rate. We can calculate the F-measure by
using the following formula:[36]

When , . In other words, recall has no impact on the F-measure when 
, and increasing  allocates an increasing amount of weight to recall in the final F-
measure.
Also  is not taken into account and can vary from 0 upward without bound.

Jaccard index

The Jaccard index is used to quantify the similarity between two datasets. The Jaccard
index takes on a value between 0 and 1. An index of 1 means that the two dataset are
identical, and an index of 0 indicates that the datasets have no common elements. The
Jaccard index is defined by the following formula:

This is simply the number of unique elements common to both sets divided by the total
number of unique elements in both sets.
Also  is not taken into account and can vary from 0 upward without bound.

Dice index

The Dice symmetric measure doubles the weight on  while still ignoring :

Fowlkes–Mallows index[42]

The Fowlkes–Mallows index computes the similarity between the clusters returned by the
clustering algorithm and the benchmark classifications. The higher the value of the
Fowlkes–Mallows index the more similar the clusters and the benchmark classifications
are. It can be computed using the following formula:
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where  is the number of true positives,  is the number of false positives, and  is
the number of false negatives. The  index is the geometric mean of the precision and
recall  and , and is thus also known as the G-measure, while the F-measure is their
harmonic mean.[43][44] Moreover, precision and recall are also known as Wallace's indices

 and .[45] Chance normalized versions of recall, precision and G-measure
correspond to Informedness, Markedness and Matthews Correlation and relate strongly to
Kappa.[46]

The mutual information is an information theoretic measure of how much information is
shared between a clustering and a ground-truth classification that can detect a non-linear
similarity between two clusterings. Normalized mutual information is a family of corrected-
for-chance variants of this that has a reduced bias for varying cluster numbers.[33]

Confusion matrix

A confusion matrix can be used to quickly visualize the results of a classification (or
clustering) algorithm. It shows how different a cluster is from the gold standard cluster.

To measure cluster tendency is to measure to what degree clusters exist in the data to be
clustered, and may be performed as an initial test, before attempting clustering. One way to do
this is to compare the data against random data. On average, random data should not have
clusters.

Hopkins statistic

There are multiple formulations of the Hopkins statistic.[47] A typical one is as follows.[48]

Let  be the set of  data points in  dimensional space. Consider a random sample
(without replacement) of  data points with members . Also generate a set  of 

 uniformly randomly distributed data points. Now define two distance measures,  to be
the distance of  from its nearest neighbor in X and  to be the distance of 
from its nearest neighbor in X. We then define the Hopkins statistic as:

With this definition, uniform random data should tend to have values near to 0.5, and
clustered data should tend to have values nearer to 1.
However, data containing just a single Gaussian will also score close to 1, as this statistic
measures deviation from a uniform distribution, not multimodality, making this statistic
largely useless in application (as real data never is remotely uniform).

Plant and animal ecology
Cluster analysis is used to describe and to make spatial and temporal comparisons of

Cluster tendency

Applications

Biology, computational biology and bioinformatics
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communities (assemblages) of organisms in heterogeneous environments. It is also used
in plant systematics to generate artificial phylogenies or clusters of organisms (individuals)
at the species, genus or higher level that share a number of attributes.

Transcriptomics
Clustering is used to build groups of genes with related expression patterns (also known
as coexpressed genes) as in HCS clustering algorithm.[49][50] Often such groups contain
functionally related proteins, such as enzymes for a specific pathway, or genes that are
co-regulated. High throughput experiments using expressed sequence tags (ESTs) or
DNA microarrays can be a powerful tool for genome annotation—a general aspect of
genomics.

Sequence analysis
Sequence clustering is used to group homologous sequences into gene families.[51] This
is a very important concept in bioinformatics, and evolutionary biology in general. See
evolution by gene duplication.

High-throughput genotyping platforms
Clustering algorithms are used to automatically assign genotypes.[52]

Human genetic clustering
The similarity of genetic data is used in clustering to infer population structures.

Medical imaging
On PET scans, cluster analysis can be used to differentiate between different types of
tissue in a three-dimensional image for many different purposes.[53]

Analysis of antimicrobial activity
Cluster analysis can be used to analyse patterns of antibiotic resistance, to classify
antimicrobial compounds according to their mechanism of action, to classify antibiotics
according to their antibacterial activity.

IMRT segmentation
Clustering can be used to divide a fluence map into distinct regions for conversion into
deliverable fields in MLC-based Radiation Therapy.

Market research
Cluster analysis is widely used in market research when working with multivariate data
from surveys and test panels. Market researchers use cluster analysis to partition the
general population of consumers into market segments and to better understand the
relationships between different groups of consumers/potential customers, and for use in
market segmentation, product positioning, new product development and selecting test
markets.

Grouping of shopping items
Clustering can be used to group all the shopping items available on the web into a set of
unique products. For example, all the items on eBay can be grouped into unique products
(eBay does not have the concept of a SKU).

Social network analysis
In the study of social networks, clustering may be used to recognize communities within

Medicine

Business and marketing

World wide web
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large groups of people.
Search result grouping

In the process of intelligent grouping of the files and websites, clustering may be used to
create a more relevant set of search results compared to normal search engines like
Google. There are currently a number of web-based clustering tools such as Clusty. It
also may be used to return a more comprehensive set of results in cases where a search
term could refer to vastly different things. Each distinct use of the term corresponds to a
unique cluster of results, allowing a ranking algorithm to return comprehensive results by
picking the top result from each cluster.[54]

Slippy map optimization
Flickr's map of photos and other map sites use clustering to reduce the number of
markers on a map. This makes it both faster and reduces the amount of visual clutter.

Software evolution
Clustering is useful in software evolution as it helps to reduce legacy properties in code by
reforming functionality that has become dispersed. It is a form of restructuring and hence
is a way of direct preventative maintenance.

Image segmentation
Clustering can be used to divide a digital image into distinct regions for border detection or
object recognition.[55]

Evolutionary algorithms
Clustering may be used to identify different niches within the population of an evolutionary
algorithm so that reproductive opportunity can be distributed more evenly amongst the
evolving species or subspecies.

Recommender systems
Recommender systems are designed to recommend new items based on a user's tastes.
They sometimes use clustering algorithms to predict a user's preferences based on the
preferences of other users in the user's cluster.

Markov chain Monte Carlo methods
Clustering is often utilized to locate and characterize extrema in the target distribution.

Anomaly detection
Anomalies/outliers are typically – be it explicitly or implicitly – defined with respect to
clustering structure in data.

Natural language processing
Clustering can be used to resolve lexical ambiguity.[54]

Sequence analysis in social sciences
Cluster analysis is used to identify patterns of family life trajectories, professional careers,
and daily or weekly time use for example.

Crime analysis
Cluster analysis can be used to identify areas where there are greater incidences of
particular types of crime. By identifying these distinct areas or "hot spots" where a similar
crime has happened over a period of time, it is possible to manage law enforcement
resources more effectively.

Educational data mining
Cluster analysis is for example used to identify groups of schools or students with similar
properties.

Computer science

Social science
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Typologies
From poll data, projects such as those undertaken by the Pew Research Center use
cluster analysis to discern typologies of opinions, habits, and demographics that may be
useful in politics and marketing.

Field robotics
Clustering algorithms are used for robotic situational awareness to track objects and
detect outliers in sensor data.[56]

Mathematical chemistry
To find structural similarity, etc., for example, 3000 chemical compounds were clustered in
the space of 90 topological indices.[57]

Climatology
To find weather regimes or preferred sea level pressure atmospheric patterns.[58]

Finance
Cluster analysis has been used to cluster stocks into sectors.[59]

Petroleum geology
Cluster analysis is used to reconstruct missing bottom hole core data or missing log
curves in order to evaluate reservoir properties.

Geochemistry
The clustering of chemical properties in different sample locations.

Automatic clustering algorithms
Balanced clustering
Clustering high-dimensional data
Conceptual clustering
Consensus clustering
Constrained clustering
Community detection
Data stream clustering
HCS clustering
Sequence clustering
Spectral clustering

Artificial neural network (ANN)
Nearest neighbor search

Others

See also

Specialized types of cluster analysis

Techniques used in cluster analysis
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Neighbourhood components analysis
Latent class analysis
Affinity propagation

Dimension reduction
Principal component analysis
Multidimensional scaling

Cluster-weighted modeling
Curse of dimensionality
Determining the number of clusters in a data set
Parallel coordinates
Structured data analysis
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