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Regression Models

Binomial Logistic Regression

Refers binary classification problems to linear regression by exploiting an appropriate data

transformation.

Assume that class Y takes values in {0,1}, then the logistic regression model represents the a posterioti
probability of class Y given the vector of explanatory variables X

P(Y | X)

through a logistic function

1 P(Y=1|)_(=X)= eXP(V_V)_()

P(Y=0|X=x)=
( | X=x] 1+ exp(w - X) " T+exp(w-Xx)

where the vector w 1s the vector of parameters of the logistic regression model and has the same

dimension of the vector X of the explanatory variables.
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Regression Models

The two previous relationships can be appropriately combined to obtain the following relationship

P(Y=1|X=x)
log =W-X
P(Y=0|X=x)

Therefore, it we place
P(Y=1]|X=x)
P(Y=0|X=x)

Z=log

The problem of binary classification 1s brought back to that of the identification of a linear regression
model between the dependent variable Z and the explanatory variables X.

After determining the coefficients of the regression model and verifying its significance, the anti-
transformation of wvariable Z 1s applied in order to subsequently use the model for forecasting
purposes on any new instance x of the vector of explanatory variables.

Classification: REGRESSION MODELS



Regression Models
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Regression Models

Logistic regression models suffer from the same problems as linear regression models.

The phenomenon of multicollinearity, which affects the significance of the regression coetficients,
requires to deal with a phase of selection of explanatory variables (feature selection).

Some known characteristics of the logistic regression model are
* accuracy usually lower than that of other classification models;
* greater laboriousness in the construction phase compared to other models of classification classification,

o extremely complex to deal with large datasets, number of explanatory variables, number of instances.
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Separation Models

The separation models we will present are as follows:
o Artificial Neural Networks
o Support Vector Machines

Spectfically regarding the Artficial Neural Networks, given the richness of this class of connectionist
models, we will present in detail only the following classification models:

 Feedforward Neural Networks
* Radial Basis Function Networks
As tar as the Support Vector Machines are concerned, we will present the following models:
o [Linear hard margin
* Linear soft margin

e  Non-linear

Classification: SEPARATION MODELS



Separation Models: neural networks B

Feedforward Neural Networks
Each neuron typically has a sef of
 input nenrons

* output neurons

pede

Neuron 7 1s input to neuron ;. Neuron 7 is output from neuron 7. Neurons are connected 1n an oriented way
by the synapse that is assoczated with a real value (weigh?).

Wi ;

jie

Each neuron 1s characterized by two elements:
- threshold, bias or threshold

- activation or transter function
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Separation Models: neural networks

Fach neuron:
- receives signals from other neurons (zzput neurons)

- sends signals to other neurons (o#tput neurons)

W3 4 X3

v
Zy =Wy Xyt Wy, Xy +Ws3,X; \ f(Z4 _94)
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Separation Models: neural networks

Formally, neuron j computes the following function:

What are the main activation functions ?
hyperbolic tangent

f(Z) itk exp (Z) —exp (—Z)
exp(z) + exp(-z)
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Separation Models: neural networks @

The single-layer perceptron implements a hyperplane in "7#-dimensional” space.
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Is the Perceptron able to learn any function ?
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Separation Models: neural networks

Multi-layer perceptron or Feedforward Neural Network

NEURONI DI INPUT
NEURONE DI OUTPUT
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Separation Models: SVM

A Support Vector Machine (SVM) learns linear

X
2 functions with threshold:
: +1 fw-Xx+b=>0
. o h(x) = signfw - x + b} = |
. o) e otherwise
® o o
® o
o)
o o . . h(X1, x2) The function A() has as its argument a

hyperplane in the space of explanatory variables.

Each instance 1s classified according to the
part of the hyperplane in which it is located.
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Heuristic Models

They use classification procedures based on elementary and intuitive algorithmic schemes. To this
category belong:

* Nearest Neighbor: based on the notion of distance between observations.

* Classtfication trees: adopt divide and conquer schemes to induce groupings of observations as
homogeneous as possible with respect to the specific target class taken into account.

* Random Forest: exploit the scheme of classification trees to develop efficient and effective
models by combining different predictions

X1 | P =F(X;s=0)=02
As | &oo = F( X =0|Xy =0) =03
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Heuristic Models: classification trees

/
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maschile Lombardia 20,000 € celibe

femminile 45 AQ Abruzzo 13,500 € coniugato si

femminile 21 RM lazio 11,600€ nubile no

femminile 62 RM lazio  15,350€ nubile no

maschile 68 RC Calabria 10,945€ divorziato no

maschile 19 AN Marche 10,233€ celibe no

maschile 24 LT lazio 10,450€ coniugato si < 12,000
femminile 2 VI Veneto 11,567€ coniugato  no 4 no
femminile 29 NO  Piemonte 16,350€ nubile no [
maschile 52 FI Toscana 11,245€ nubile Si

femminile 34 M Sicilia  13,450€ coniugato no

femminile 33 M| Basilicata 7,500€ coniugato  no

femminile 55 TN Trentino 13,450 € coniugato Si

maschile 39 FR lazio 11,590€ celibe Si

femminile 55 Ml  Llombardia 23,500€ coniugato no

maschile 27 Ml Lombardia 35,800€ celibe no

femminile 31 AQ Abruzzo 14.750€ coniugato no
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Heuristic Models: nearest neighbor

observation to be classified

We fix £=4
Fuclidean distance
two classes X,

3 red, 1 green => red

. >
You can weigh the grade of each X

observation inversely proportional !

to the distance.
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Probabilistic Models

Probabilistic models solve the supervised classification problem through the use of the
following conditional probability

where for the moment we assume that Y is a binary variable and X 1s an n-dimensional binary
vectof.
Furthermore, we will denote by X the /~th component of the vector X.

According to Bayes' formula we can write

PX=x Y =y)PlY =y,
P(Y=yill(=xk)=2|g(l(=xk|Y=y)?j)-|£)(Y=y)2j)

where y; denotes the ~th element of the support of Y, while xx denotes the 4-th possible
assignment of the vector X.

Classification: PROBABILISTIC MODELS



