# CLASSIFICATION REGRESSION MODELS



### **Binomial Logistic Regression**

Refers binary classification problems to linear regression by exploiting an appropriate data transformation.

Assume that class Y takes values in  $\{0,1\}$ , then the logistic regression model represents the a posteriori probability of class Y given the vector of explanatory variables  $\underline{X}$ 

P(Y | X)

through a logistic function

$$P(Y = 0 | \underline{X} = \underline{x}) = \frac{1}{1 + \exp(\underline{w} \cdot \underline{x})} \qquad P(Y = 1 | \underline{X} = \underline{x}) = \frac{\exp(\underline{w} \cdot \underline{x})}{1 + \exp(\underline{w} \cdot \underline{x})}$$

where the vector  $\underline{w}$  is the vector of parameters of the logistic regression model and has the same dimension of the vector  $\underline{X}$  of the explanatory variables.

The two previous relationships can be appropriately combined to obtain the following relationship

$$\log \frac{P(Y=1|\underline{X}=\underline{x})}{P(Y=0|\underline{X}=\underline{x})} = \underline{w} \cdot \underline{x}$$

Therefore, if we place

$$Z = \log \frac{P(Y = 1 | \underline{X} = \underline{x})}{P(Y = 0 | \underline{X} = \underline{x})}$$

The problem of binary classification is brought back to that of the identification of a linear regression model between the dependent variable Z and the explanatory variables  $\underline{X}$ .

After determining the coefficients of the regression model and verifying its significance, the antitransformation of variable Z is applied in order to subsequently use the model for forecasting purposes on any new instance  $\underline{x}$  of the vector of explanatory variables.



#### **Classification: REGRESSION MODELS**

3

Logistic regression models suffer from the same problems as linear regression models.

The phenomenon of multicollinearity, which affects the significance of the regression coefficients, requires to deal with a phase of selection of explanatory variables (feature selection).

Some known characteristics of the logistic regression model are

- accuracy usually lower than that of other classification models;
- greater laboriousness in the construction phase compared to other models of classification classification;
- extremely complex to deal with large datasets, number of explanatory variables, number of instances.



#### **Classification: REGRESSION MODELS**

# CLASSIFICATION SEPARATION MODELS



## **Separation Models**

The separation models we will present are as follows:

- Artificial Neural Networks
- Support Vector Machines

Specifically regarding the *Artificial Neural Networks*, given the richness of this class of connectionist models, we will present in detail only the following classification models:

- Feedforward Neural Networks
- Radial Basis Function Networks

As far as the *Support Vector Machines* are concerned, we will present the following models:

- Linear hard margin
- Linear soft margin
- Non-linear

# Separation Models: neural networks <sup>2</sup>

### Feedforward Neural Networks

Each neuron typically has a set of

- *input neurons*
- output neurons



Neuron *i* is *input* to neuron *j*. Neuron *j* is *output* from neuron *i*. *Neurons* are connected in an *oriented* way by the synapse that is *associated* with a real value (*weight*).



Each *neuron* is *characterized* by two elements:

- threshold, bias or threshold
- activation or transfer function

#### Each neuron:

- receives signals from other neurons (*input* neurons)
- sends signals to other neurons (output neurons)



#### Classification: SEPARATION MODELS

Formally, neuron *j* computes the following function:

$$\mathbf{y}_{j} = \mathbf{f} \left( \sum_{i=1}^{n} \mathbf{w}_{i,j} \cdot \mathbf{x}_{i} - \boldsymbol{\theta}_{j} \right)$$

What are the *main activation functions*?



#### **Classification: SEPARATION MODELS**

The single-layer perceptron implements a hyperplane in "n-dimensional" space.



Is the *Perceptron* able to learn *any function* ?

#### Multi-layer perceptron or Feedforward Neural Network



#### **Classification: SEPARATION MODELS**

# **Separation Models: SVM**



A Support Vector Machine (SVM) learns linear functions with threshold:

$$h(\underline{x}) = sign\{\underline{w} \cdot \underline{x} + b\} = \begin{cases} +1 & \text{if } \underline{w} \cdot \underline{x} + b \ge 0 \\ -1 & \text{otherwise} \end{cases}$$

The function  $h(\cdot)$  has as its argument a *hyperplane* in the space of explanatory variables.

Each instance is classified according to the part of the hyperplane in which it is located.

# CLASSIFICATION HEURISTIC MODELS



### **Heuristic Models**

They use classification procedures based on elementary and intuitive algorithmic schemes. To this category belong:

- Nearest Neighbor: based on the notion of distance between observations.
- *Classification trees*: adopt divide and conquer schemes to induce groupings of observations as homogeneous as possible with respect to the specific target class taken into account.
- *Random Forest*: exploit the scheme of classification trees to develop efficient and effective models by combining different predictions



| $X_1$   | $\theta_{20} = F(X_1 = 0) = 0.2$                                               |
|---------|--------------------------------------------------------------------------------|
| $X_0$   | $\theta_{200} = F(X_0 = 0   X_1 = 0) = 0.3$                                    |
|         | $\delta_{001} = F(X_0 = 0   X_1 = 1) = 0.5$                                    |
| $X_{2}$ | $\vartheta_{306} = F(X_5 = 0   X_1 = 0)$                                       |
|         | $\theta_{301} = F(X_3 = 0   X_1 = 1) = 0.5$                                    |
| $X_{2}$ | $\theta_{5000} = F(X_5 = 0   X_2 = 0, X_5 = 0) = 0.1$                          |
|         | $\beta_{5001} = F(X_5 = 0   X_2 = 0, X_5 = 1) = 0.3$                           |
|         | $\delta_{9020} = F(X_5 = 0   X_2 = 1, X_5 = 0) = 0.8$                          |
|         | $\theta_{9011} \equiv F(X_9 \equiv 0   X_2 \equiv 1, X_3 \equiv 1) \equiv 0.4$ |
| $X_3$   | $\theta_{100} \equiv F(X_3 \equiv 0   X_3 \equiv 0) \equiv 0.3$                |
|         | $\bar{\sigma}_{105} \equiv F(X_3 \equiv 0   X_5 \equiv 1) \equiv 0.1$          |
| $X_{6}$ | $\theta_{GDE} = F \langle X_E = 0   X_E = 0 \rangle$                           |
|         | $\delta_{601} = F(X_6 = 0   X_4 = 1) = 0.9$                                    |
| $X_7$   | $\delta_{700} = F(X_7 = 0   X_4 = 0) = 0.3$                                    |
|         | $\hat{v}_{r01} = F(X_r = 0   X_t = 1) = 0.6$                                   |
| $X_8$   | $\bar{\sigma}_{800} = F(X_8 = 0   X_5 = 0) = 0.2$                              |
|         | $\hat{v}_{001} \equiv F(X_0 \equiv 0   X_S \equiv 1) \equiv 0.4$               |

#### **Classification: HEURISTIC MODELS**

### Heuristic Models: classification trees

| GENERE    | ETA | PROVINCIA | REGIONE    | REDD ANN | <br>STATO CIVILE | EVASORE |
|-----------|-----|-----------|------------|----------|------------------|---------|
| maschile  | 32  | VA        | Lombardia  | 20,000€  | celibe           | no      |
| femminile | 45  | AQ        | Abruzzo    | 13,500€  | coniugato        | si      |
| femminile | 21  | RM        | Lazio      | 11,600€  | nubile           | no      |
| femminile | 62  | RM        | Lazio      | 15,350€  | nubile           | no      |
| maschile  | 68  | RC        | Calabria   | 10,945€  | divorziato       | no      |
| maschile  | 19  | AN        | Marche     | 10,233€  | celibe           | no      |
| maschile  | 24  | LT        | Lazio      | 10,450€  | coniugato        | si      |
| femminile | 22  | VI        | Veneto     | 11,567€  | coniugato        | no      |
| femminile | 29  | NO        | Piemonte   | 16,350€  | nubile           | no      |
| maschile  | 52  | FI        | Toscana    | 11,245€  | nubile           | si      |
| femminile | 34  | MI        | Sicilia    | 13,450€  | coniugato        | no      |
| femminile | 33  | MI        | Basilicata | 7,500€   | coniugato        | no      |
| femminile | 55  | TN        | Trentino   | 13,450€  | coniugato        | si      |
| maschile  | 39  | FR        | Lazio      | 11,590€  | celibe           | si      |
| femminile | 55  | MI        | Lombardia  | 23,500€  | coniugato        | no      |
| maschile  | 27  | MI        | Lombardia  | 35,800€  | celibe           | no      |
| femminile | 31  | AQ        | Abruzzo    | 14.750€  | <br>coniugato    | no      |



2

# Heuristic Models: nearest neighbor



You can weigh the grade of each observation inversely proportional to the distance.

**Classification: HEURISTIC MODELS** 

3

# CLASSIFICATION PROBABILISTIC MODELS



### **Probabilistic Models**

Probabilistic models solve the supervised classification problem through the use of the following conditional probability P(Y | X)

where for the moment we assume that Y is a binary variable and  $\underline{X}$  is an n-dimensional binary vector.

Furthermore, we will denote by  $X_i$  the *i*-th component of the vector  $\underline{X}$ .

According to *Bayes' formula* we can write

$$P(Y = y_i | \underline{X} = x_k) = \frac{P(\underline{X} = x_k | Y = y_i) \cdot P(Y = y_i)}{\sum_j P(\underline{X} = x_k | Y = y_j) \cdot P(Y = y_j)}$$

where  $y_i$  denotes the *i*-th element of the support of Y, while  $x_k$  denotes the *k*-th possible assignment of the vector  $\underline{X}$ .