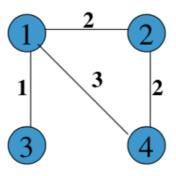
CLUSTERING MARKOV CLUSTERING ALGORITHM

Some of the content in this lesson is taken from the publication:



Van Dongen, S. (2000)

Graph Clustering by Flow Simulation.

PhD Thesis, University of Utrecht, The Netherlands.

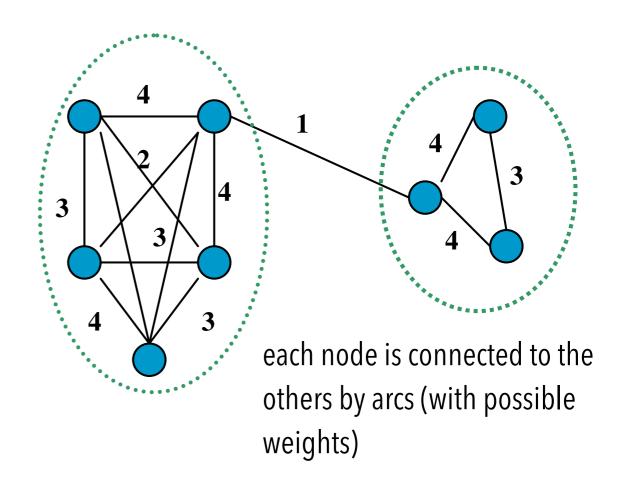
The MCL software can be downloaded from http://www.micans.org/mcl/

It is a graph-based clustering algorithm used in bioinformatics.

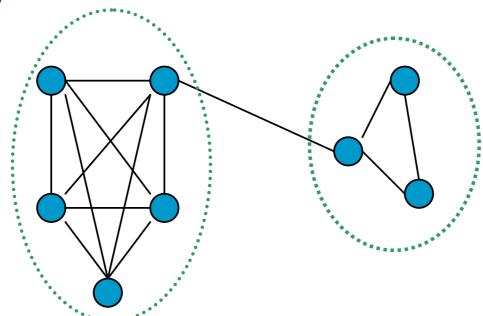
Vector clustering

each point has coordinates (x, y) and a class (color) to which it belongs

Graph clustering

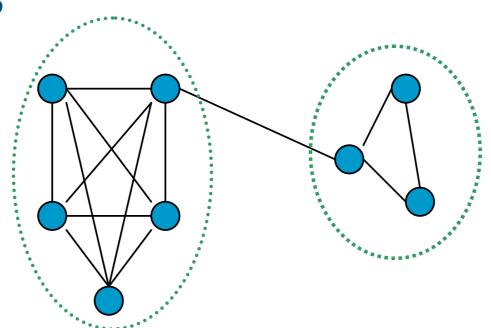


Random Walks



- Considering a graph, there will be many links within a cluster and few between clusters.
- This means that if you start from a node and follow a random path to another connected node, you are more likely to stay within a cluster than to cross it to reach the other node.
- This is the concept on which the MCL algorithm is based.

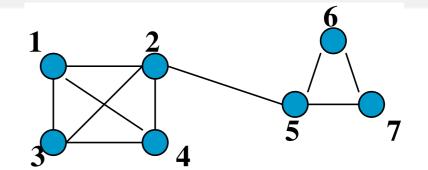
Random Walks



- Following random walks in the graph, it is possible to find out where the flows (paths) tend to converge, and therefore where are the clusters.
- The Random Walks on a graph are calculated by means of the "Markov Chains".

Random Walks

Let's see a working example.



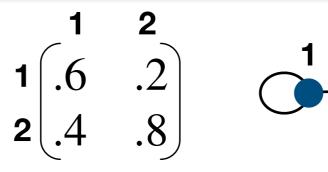
- At a first step, a random *walker* starting at node 1 has a 33% probability of going to nodes 2, 3 and 4 and 0% probability of going to nodes 5, 6 or 7.
- On the other hand, starting from node 2, it has a 25% probability of reaching nodes 1, 3, 4, 5 and 0% towards nodes 6 and 7.
- The corresponding transition matrix (paths on columns) will then be:

	1	2	3	4	5	6	7
1	\int_{0}^{∞}	.25	.33	.33	0	0	0
2	.33	0	.33	.33	.33	0	0
3	.33	.25	0	.33	0	0	0
4	.33	.25	.33	0	0	0	0
5	0	.25	0	0	0	.5	.5
6	0	0	0	0	.33	0	.5
7	$\sqrt{0}$	0	0	0	.33	.5	0/

- each column has sum 1
- it can therefore be seen like a *probability matrix*

Markov Chain

A <u>simpler</u> example.



• Let's valuate the steps at times $t_0 \rightarrow t_1 \rightarrow t_2$

$$.6 \times .6 + .2 \times .4 = .44$$

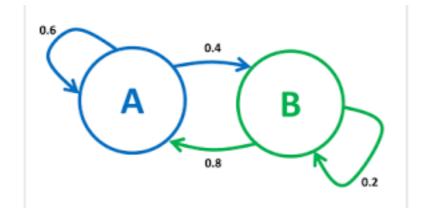
$$.4 \times .2 + .8 \times .8 = .72$$

$$\begin{pmatrix}
.6 & .2 \\
.4 & .8
\end{pmatrix}$$

$$\left[.6\right]$$

$$\begin{bmatrix} .6 & .2 \\ .4 & .8 \end{bmatrix} \cdot \begin{bmatrix} .6 & .2 \\ .4 & .8 \end{bmatrix} = \begin{bmatrix} .44 & .28 \\ .56 & .72 \end{bmatrix} \longrightarrow \begin{bmatrix} .35 & .32 \\ .65 & .68 \end{bmatrix} \longrightarrow \begin{bmatrix} .34 & .33 \\ .67 & .67 \end{bmatrix}$$

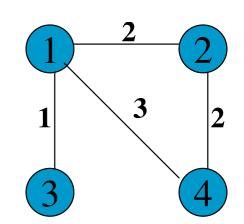
Markov Chain



- A sequence of variables X_1 , X_2 , X_3 , ... (in our case probability matrices) in which, given the present state, the past and future states are independent.
- A "Markov Chain" (Markovian process) therefore has no memory.
- The probabilities for the next time step depend only on the current probabilities.
- A Random Walk is an example of a Markov Chain, using probability transition matrices.

Weighted Graphs (grafi pesati)

 To transform a weighted graph into a (transition of) probability matrix we need to normalize the columns:



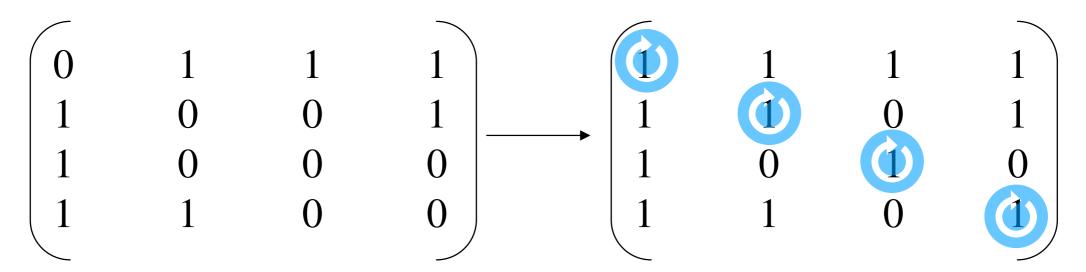
0	2	1	3
2	0	0	2
1	0	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$
3	2	0	0

\bigcap	1/2	1	3/5
1/3	0	0	2/5
1/6	0	0	0
1/2	1/2	0	0

- a column is normalized by dividing each element by the sum of its elements;
- ▶ at the end of the transformation the matrix is no longer symmetric!

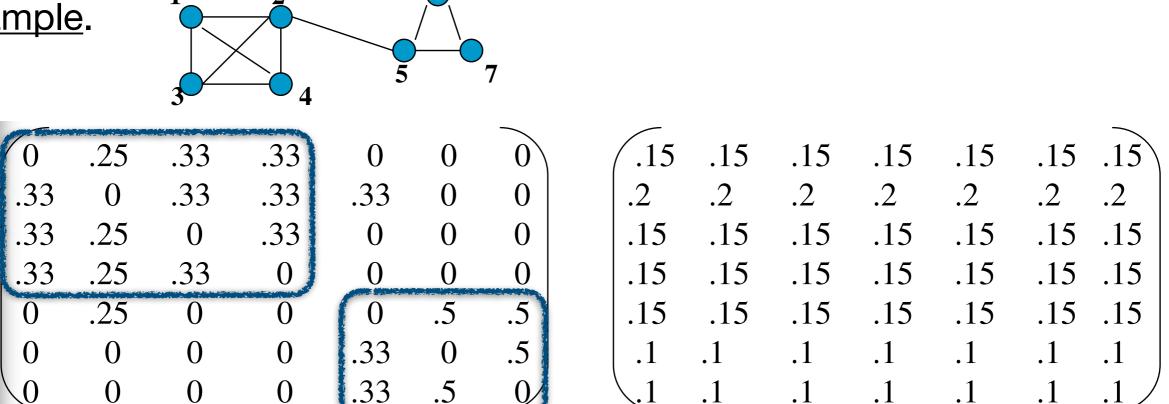
Self Loops

- Small simple paths with loops can complicate things.
- There is a strong effect given that odd powers of expansion obtain their mass from simple paths of odd length, as well as for those of even length.
- This makes the transition probabilities dependent on the equality of the lengths of the simple paths.
- Adding self-loop arcs on each node solves this problem.
 - A self-loop adds a small path of length 1 so that the mass does not appear only in the odd (or even) powers of the matrix.



Cluster structure of a Markov chain

Example.



• Note that, in the initial steps, before the flow shuffles, the cluster structure is already evident in the matrix.

eventually

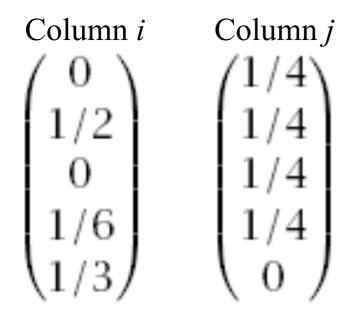
• This is not a coincidence and the MCL algorithm uses this feature, by modifying the random walk process, to further emphasize the separation between clusters in the matrix.

- Flow is easier through dense regions than through scattered boundaries; however, in the long run this effect fades.
- During the initial powers of the Markov Chain, the weights of the arcs will be larger in the links within clusters, and smaller in the links between clusters.
- This means that there is a correspondence between the distribution of weights on the columns and the clustering.

- MCL deliberately increases this effect:
 - by first breaking the chain;
 - then modifying the transitions through the columns.
- For each node, the transition values are changed so that:
 - the "strong" neighbors are further strengthened;
 - "weaker" neighbors are demoted.
- This change can be made by raising a single column to a nonnegative power, and then re-normalizing it.
- This operation is called "Inflation".
- Raising the matrix to a power is called "Expansion".

MCL Inflation

• Example of order 2 inflation (elevation squared):



$$\begin{pmatrix} 0 \\ 9/14 \\ 0 \\ 1/14 \\ 1/14 \\ 4/14 \end{pmatrix} \begin{pmatrix} 1/4 \\ 1/4 \\ 1/4 \\ 0 \end{pmatrix}$$

▶ Elevates a column squared, then normalizes it

MCL Inflation

Definition. Given a matrix $M \in \mathbb{R}^{k \times l}$, $M \geq 0$, and a real non-negative number $r, \Gamma_r M$ is the matrix obtained by raising each column of M to the power $r; \Gamma_r$ T is called the **inflation** operator with power coefficient r. Formally, the operation of $\Gamma_r : \mathbb{R}^{k \times l}$ is defined as follows:

$$(\Gamma_r M)_{pq} = \frac{(M_{pq})^r}{\sum_{i=1}^k (M_{iq})^r}$$
 q indicates the vertex (column) attracted by vertex p

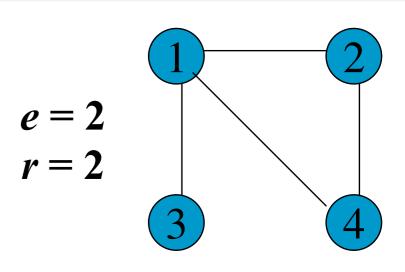
If r is omitted, the power coefficient is equal to 2.

- ▶ The inflation operator is responsible for both strengthening and weakening flows (increases the strength of already strong flows, decreases the strength of already weak flows).
- ▶ The inflation parameter r controls the speed of this process.
- This eventually affects the granularity of the obtained clusters.

- The following two processes alternate repeatedly in the MCL algorithm:
 - **Expansion** (raise the transition matrix to a power);
 - Inflation.
- The expansion operator allows the flow to connect different regions of the graph.
- The inflation operator is responsible for the increase (intracluster) and decrease (inter-cluster) of the flow.

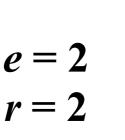
- 1. Input: undirected (bidirectional) graph *g*, expansion parameter *e*, inflation parameter *r*.
- 2. Create the matrix M associated with the graph.
- 3. Add (possibly) self-loops to the nodes.
- 4. Normalize the *M* matrix.
- 5. Expand by raising the matrix M to the power e, obtaining M'.
- 6. Inflate the matrix M' obtained in the previous step by applying the parameter r.
- 7. Repeat steps 5 and 6 until convergence [M(i+1) = M(i)] is achieved.
- 8. Interpret the resulting matrix to discover the clusters.

- 1. Input: undirected (bidirectional) graph g, expansion parameter e, inflation parameter r.
- 2. Create the matrix M associated with the graph.
- 3. Add (possibly) self-loops to the nodes.
- 4. Normalize the *M* matrix.
- 5. Expand by raising the matrix M to the power e, obtaining M.
- 6. Inflate the matrix M' obtained in the previous step by applying the parameter r.
- 7. Repeat steps 5 and 6 until convergence [M(i+1) = M(i)] is achieved.
- 8. Interpret the resulting matrix to discover the clusters.



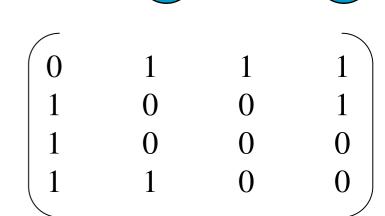
The MCL algorithm

1. Input: undirected (bidirectional) graph g, expansion parameter e, inflation parameter r.

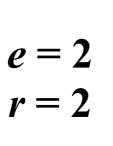


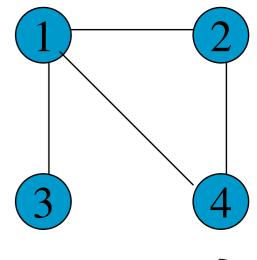
2. Create the matrix M associated with the graph.

- 4. Normalize the *M* matrix.
- 5. Expand by raising the matrix M to the power e, obtaining M.
- 6. Inflate the matrix M' obtained in the previous step by applying the parameter r.
- 7. Repeat steps 5 and 6 until convergence [M(i+1) = M(i)] is achieved.
- 8. Interpret the resulting matrix to discover the clusters.



- 1. Input: undirected (bidirectional) graph g, expansion parameter e, inflation parameter r.
- 2. Create the matrix M associated with the graph.
- 3. Add (possibly) self-loops to the nodes.
- 4. Normalize the *M* matrix.
- 5. Expand by raising the matrix M to the power e, obtaining M.
- 6. Inflate the matrix M' obtained in the previous step by applying the parameter r.
- 7. Repeat steps 5 and 6 until convergence [M(i+1) = M(i)] is achieved.
- 8. Interpret the resulting matrix to discover the clusters.

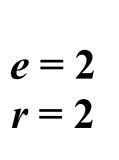


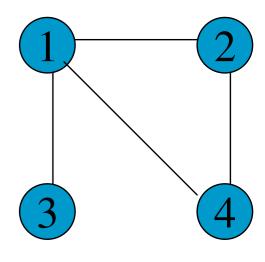


$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$	1	1	1
	0	0	1
1	0	0	0
1	1	0	0

$\left(1\right)$	1	1	1
1 1 1	1	0	1
1	0	1	0
1	1	0	1
			/

- 1. Input: undirected (bidirectional) graph g, expansion parameter e, inflation parameter r.
- 2. Create the matrix M associated with the graph.
- 3. Add (possibly) self-loops to the nodes.
- 4. Normalize the *M* matrix.
- 5. Expand by raising the matrix M to the power e, obtaining M.
- 6. Inflate the matrix M' obtained in the previous step by applying the parameter r.
- 7. Repeat steps 5 and 6 until convergence [M(i+1) = M(i)] is achieved.
- 8. Interpret the resulting matrix to discover the clusters.



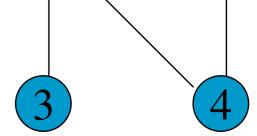


$\left(\begin{array}{c}1\end{array}\right)$	1	1	1
1 1 1 1	1	0	1
1	0	1	0
1	1	0	1

1/4	1/3	1/2	1/3
1/4	1/3	0	1/3
1/4	0	1/2	0
1/4	1/3	0	1/3
\			

The MCL algorithm

- 1. Input: undirected (bidirectional) graph g, expansion parameter e, inflation parameter r.
- e = 2 r = 2



- 2. Create the matrix M associated with the graph.
- 3. Add (possibly) self-loops to the nodes.
- 4. Normalize the *M* matrix.
- 5. Expand by raising the matrix M to the power e, obtaining M'.
- 6. Inflate the matrix M' obtained in the previous step by applying the parameter r.
- 7. Repeat steps 5 and 6 until convergence [M(i+1) = M(i)] is achieved.
- 8. Interpret the resulting matrix to discover the clusters.

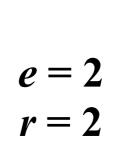
 .35
 .31
 .38
 .31

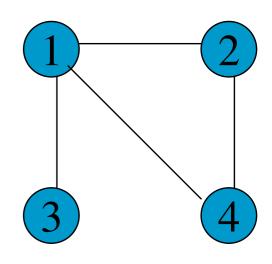
 .23
 .31
 .13
 .31

 .19
 .08
 .38
 .08

 .23
 .31
 .13
 .31

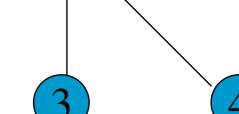
- 1. Input: undirected (bidirectional) graph g, expansion parameter e, inflation parameter r.
- 2. Create the matrix M associated with the graph.
- 3. Add (possibly) self-loops to the nodes.
- 4. Normalize the *M* matrix.
- 5. Expand by raising the matrix M to the power e, obtaining M'.
- 6. Inflate the matrix M' obtained in the previous step by applying the parameter r.
- 7. Repeat steps 5 and 6 until convergence [M(i+1) = M(i)] is achieved.
- 8. Interpret the resulting matrix to discover the clusters.





The MCL algorithm

- 1. Input: undirected (bidirectional) graph g, expansion parameter e, inflation parameter r.
- e = 2 r = 2

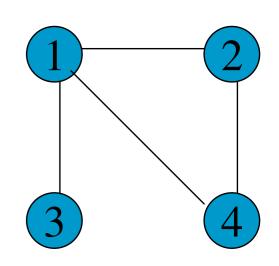


- 2. Create the matrix M associated with the graph.
- 3. Add (possibly) self-loops to the nodes.
- 4. Normalize the *M* matrix.
- 5. Expand by raising the matrix M to the power e, obtaining M.
- 6. Inflate the matrix M' obtained in the previous step by applying the parameter r.
- 7. Repeat steps 5 and 6 until convergence [M(i+1) = M(i)] is achieved.
- 8. Interpret the resulting matrix to discover the clusters.

.70 .33 .49 .33 .12 .33 .01 .33 .05 .02 .49 --.12 .33 .01 .33

The MCL algorithm

- 1. Input: undirected (bidirectional) graph g, expansion parameter e, inflation parameter r.
- 2. Create the matrix M associated with the graph.
- 3. Add (possibly) self-loops to the nodes.
- 4. Normalize the *M* matrix.
- 5. Expand by raising the matrix M to the power e, obtaining M.
- 6. Inflate the matrix M' obtained in the previous step by applying the parameter r.
- 7. Repeat steps 5 and 6 until convergence [M(i+1) = M(i)] is achieved.
- 8. Interpret the resulting matrix to discover the clusters.



e=2

later...

MCL Algorithm Convergence

- It is not proved that the algorithm converges [M(i+1) = M(i)]; in the doctoral thesis the author shows its convergence only experimentally...
- In practice, the algorithm almost always converges to a "doubly idempotent" matrix (steady state, equal values in the columns):

/1.000					1.000	1.000			1.000		\
											}
j	1.000	1.000		1.000							İ
											İ
			0.500				0.500	0.500		0.500	0.500
			0.500				0.500	0.500		0.500	0.500
\											/
					M_{p}^{c}	∞ ncl					

MCL Algorithm Convergence

- It is shown that when the matrix is about to become "doubly idempotent", the algorithm converges quadratically.
- However, the final steady state can sometimes be cyclic and consist of a sequence of identically repeating matrices.
 - In some cases, expansion and inflation behave as the inverse of each other.
 - This usually occurs in the absence of self-loops in bipartite graphs due to the odd length of the paths.
 - To overcome this, it is sufficient to add the self-loops and make a slight modification to the parameters.

MCL Algorithm Convergence

/0.200	0.250				0.333	0.250			0.250		\
0.200	0.250	0.250		0.200							}
	0.250	0.250	0.200	0.200							İ
		0.250	0.200				0.200	0.200		0.200	İ
	0.250	0.250		0.200		0.250	0.200				
0.200					0.333				0.250		
0.200				0.200		0.250			0.250		
			0.200	0.200			0.200	0.200		0.200	İ
			0.200				0.200	0.200		0.200	0.333
0.200					0.333	0.250			0.250		
			0.200				0.200	0.200		0.200	0.333
\								0.200		0.200	0 . 333/
					M						

/0.380	0.087	0.027		0.077	0.295	0.201			0.320		\
0.047	0.347	0.210	0.017	0.150	0.019	0.066	0.012		0.012		
0.014	0.210	0.347	0.056	0.150		0.016	0.046	0.009		0.009	i
	0.027	0.087	0.302	0.062			0.184	0.143		0.143	0.083
0.058	0.210	0.210	0.056	0.406		0.083	0.046	0.009	0.019	0.009	İ
0.142	0.017				0.295	0.083			0.184		
0.113	0.069	0.017		0.062	0.097	0.333	0.012		0.147		
	0.017	0.069	0.175	0.049		0.016	0.287	0.143		0.143	0.083
		0.017	0.175	0.012			0.184	0.288		0.288	0.278
0.246	0.017			0.019	0.295	0.201			0.320		
		0.017	0.175	0.012			0.184	0.288		0.288	0.278
/			0.044				0.046	0.120		0.120	0.278 <i>/</i>

 $\Gamma_2 M^2$,

MCL Algorithm Convergence

/0.448	0.080	0.023		0.068	0.426	0.359			0.432		\
0.018	0.285	0.228	0.007	0.176	0.006	0.033	0.005		0.007		}
0.005	0.223	0.290	0.022	0.173		0.010	0.017	0.003	0.001	0.003	0.001
	0.018	0.059	0.222	0.040		0.001	0.187	0.139		0.139	0.099
0.027	0.312	0.314	0.028	0.439	0.005	0.054	0.022	0.003	0.010	0.003	0.001
0.116	0.007	0.001		0.004	0.157	0.085			0.131		
0.096	0.040	0.013		0.037	0.083	0.197	0.001		0.104		
	0.012	0.042	0.172	0.029		0.002	0.198	0.133		0.133	0.096
	0.001	0.015	0.256	0.009			0.266	0.326		0.326	0.346
0.290	0.021	0.002		0.017	0.323	0.260			0.316		
	0.001	0.015	0.256	0.009			0.266	0.326		0.326	0.346
\		0.001	0.037	0.001			0.039	0.069		0.069	0.112 <i>/</i>
					D (D 162	E 162					

 $\Gamma_2(\Gamma_2M^2\cdot\Gamma_2M^2)$

/0.807	0.040	0.015		0.034	0.807	0.807			0.807		\
	0.090	0.092		0.088							
	0.085	0.088		0.084							
	0.001	0.001	0.032	0.001			0.032	0.031		0.031	0.031
	0.777	0.798		0.786		0.001					
0.005					0.005	0.005			0.005		
0.003	0.001			0.001	0.003	0.003			0.003		İ
		0.001	0.024				0.024	0.024		0.024	0.024
		0.002	0.472	0.001			0.472	0.472		0.472	0.472
0.185	0.005	0.001		0.004	0.185	0.184			0.185		
		0.002	0.472	0.001			0.472	0.472		0.472	0.472
\			0.001				0.001	0.001		0.001	/

 $(\Gamma_2 \circ Squaring)$ iterated four times on M

MCL Algorithm Convergence

/1.000					1.000	1.000			1.000		\
11.000					1.000	1.000			1.000		/
{											}
	1.000	1.000		1.000							i
			0.500				0.500	0.500		0.500	0.500
l											
			0.500				0.500	0.500		0.500	0.500
\											/
M^{∞}											

 M_{mcl}^{∞}

Interpretation of MCL Clusters

- To interpret clusters, vertices are divided into two types:
 - attractors (attracting other vertices);
 - the attracted (vertices that are attracted by the former).
- Attractors have at least one positive flux value within their corresponding row (of the stationary matrix).
- Each attractor attracts vertices that have positive values within its row.

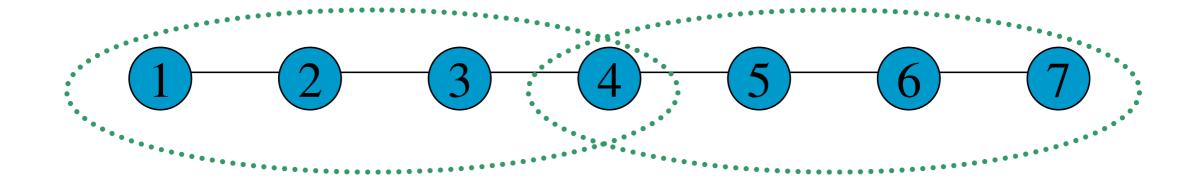
/1.000					1.000	1.000			1.000		\
											}
	1.000	1.000		1.000							
i											İ
			0.500				0.500	0.500		0.500	0.500
			0.500				0.500	0.500		0.500	0.500
\											/

Interpretation of MCL Clusters

- The attractors and the elements attracted by them are bound together in the same cluster.
- In the example above, the clusters are:
 - $C_1 = \{1, 6, 7, 10\} \text{ (row 1)}$
 - $C_2 = \{2, 3, 5\} \text{ (row 5)}$
 - $C_3 = \{4, 8, 9, 11, 12\} \text{ (row } 9 = \text{row } 11\text{)}.$

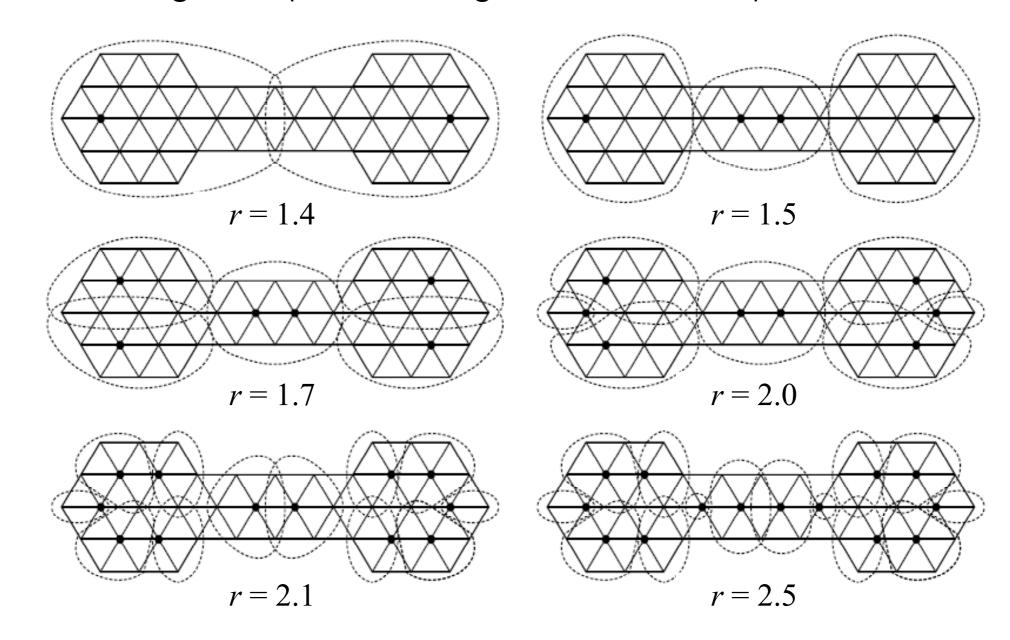
Interpretation of MCL Clusters

- In general, overlapping clusters (where one or more nodes belong to more than one cluster) result only in some special cases of symmetrical graphs:
 - only when a vertex (node of the graph) is attracted in an exactly equal way by more than one cluster;
 - this happens only when both clusters are isomorphic:



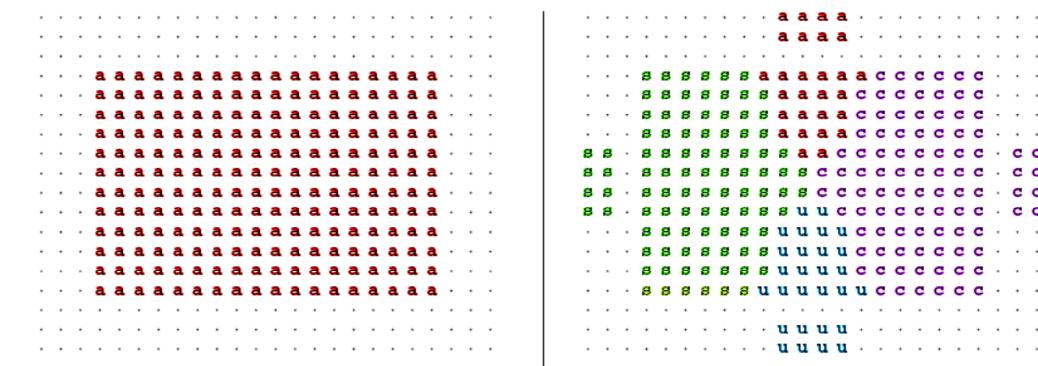
MCL Clusters

- The inflation parameter r affects the granularity of the clusters.
- In the following example, the weight of the self-loops is 1.



MCL Clusters

- For large diameter clusters, MCL has problems.
- Distributing the flow across clusters needs high expansion and low inflation (otherwise the cluster splits).
- This involves many iterations and makes MCL sensitive to small perturbations in the graph.
- Adding small diameter clusters disrupts clustering, as the low inflation parameter will cause them to disproportionately inflate the surrounding probabilities.



MCL Algorithm Analysis

- Processing time proportional to N^3 , where N is the number of vertices:
 - N^3 is the cost of multiplying two matrices of order N;
 - inflation can be performed in a time proportional to N2;
 - the number of iterations required for convergence of the algorithm is not proven, but has been shown experimentally to be $\sim 10 \div 100$ steps, for most concerning scattered matrices after the first few steps.
- Processing speed can be improved by removing (pruning) unnecessary values:
 - by examining the matrix it is possible to set to zero the values that are small enough (it is assumed that they would become so at a certain step);
 - the algorithm works well when the diameter of the clusters is small (non-homogeneous distribution of weights).

MCL Algorithm Analysis

- Scales well as the size of the graph increases.
- Operates with weighted and unweighted graphs.
- Produces good clustering results.
- Robust with respect to the presence of noise in the graph data.
- Number of clusters not initially specified, but it is possible to adjust the granularity of clusters with parameters e and r.
- Generally unable to detect overlapping clusters.
- Not suitable for large diameter clusters.